Admixture in the Puerto Rican Population: Physiogenomic Analysis and Implications for Personalized Medicine

1st Latin-American Pharmacogenomics Congress

by Jorge Duconge, PhD
University of Puerto Rico
School of Pharmacy
Outlines

• PG analysis of Puerto Ricans
• Implication for Personalize Warfarin in Puerto Ricans
• Concluding Remarks
• Future Work
Population Admixture in Drug Prescription

Dr. Suarez-Kurtz pointed out:

“…personalized medicine must take into account individual genetic variability and that intra-group differences challenge the practice of using categories of race and ethnicity [as a proxy] in genetic association studies…..”
Ancestry in Puerto Rican: A tri-Hybrid Model

- AlMs (53.3% Eur/29.1% West-Afr./17.6% Natives)
- mtDNA (12.5% Eur/26% West-Afr./61% Natives/ ~53% Amerindians)
- Blood markers (45% Eur/ 37% West-Afr./ 18% Natives)
- Y-Chr (~ 80% Eur/ ~ 20% Afr.)
- Others (60% Eur/25% Afr./15% Natives-Simulated)

- Pharmacological meanings?...........PG markers
 - Pop stratification/confounding surrogates
Physiogenomic Technology

PhysioGenomic PG Array
222 Genes 384 SNPs
SINGLE NUCLEOTIDE POLYMORPHISMS
STABLE, INHERITED DNA MARKERS
DNA OBTAINED FROM BLOOD SAMPLE

Novel Platform for DNA-guided Medicine: System Analysis of Physiological Pathways

Ruaño G, Windemuth A. Physiogenomic Method for Predicting Clinical Outcomes of Treatments in Patients. 2006; 20060278241, USA patent.
Representative sampling (N=100) per geographic regions based on percentage of birth at each region around the Puerto Rican Island according to the 2004 National Births Registry.
Admixture of the PR population

Ancestry-based STRUCTURE triangle plot. Bayesian algorithm (K=3)

Pharmacogenomics, 2009 Apr; 10(4):565-77
Genetic Heterogeneity of the PR population

Hierarchical clustering algorithm was blind as to ethno-geographic ancestry

Pharmacogenomics, 2009 Apr; 10(4):565-77
Population dissimilarity between the 3 clusters found by STRUCTURE compared to 3 International HapMap reference populations

Pharmacogenomics, 2009 Apr; 10(4):565-77
Genetic Admixture of the PR population

Judge Sonia Sotomayor

Boricua, Hispanic or Latino, but what does it really mean?

Pharmacogenomics, 2009 Apr; 10(4):565-77
The Challenge
Variability in warfarin dose requirement

GWAS of Warfarin Anticoagulation Dose-Response

Takeuchi et al. PLoS Genetics 2009; 5(3)
ORIGINAL REPORTS: CARDIOVASCULAR DISEASE

PREVALENCE OF COMBINATORIAL CYP2C9 AND VKORC1 GENOTYPES IN PUERTO RICANS: IMPLICATIONS FOR WARFARIN MANAGEMENT IN HISPANICS

Abstract: Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. We determined the frequencies of alleles, single carriers, and double carriers of single nucleotide polymorphisms (SNPs) in the CYP2C9 and VKORC1 genes in a Puerto Rican cohort and gauged the impact of these polymorphisms on warfarin dosage using a published algorithm. A total of 92 DNA samples were genotyped using Lumines® x-MAP technology. The polymorphism frequencies were 6.5%, 5.43% and 28.8% for CYP2C9*2, *3 and VKORC1-1639 C>A polymorphisms, respectively. The prevalence of combinatorial genotypes was 16% for carriers of both the CYP2C9 and VKORC1 polymorphisms, 9% for carriers of CYP2C9 polymorphisms, 35% for carriers of the VKORC1 polymorphisms, and 11% for non-carriers.

INTRODUCTION

Warfarin is an oral anticoagulant considered as the standard-of-care therapy for many thromboembolic disorders.1-2 More than 24 million prescriptions for warfarin were written in United States in 2007.3-4 Warfarin is frequently prescribed at stable maintenance dosages and increased bleeding complications.8-10 Polymorphisms of CYP2C9 include CYP2C9*2 and CYP2C9*3, which are associated with reduced enzyme activity to 70% and 5% of the normal level, respectively.8,11-13 The result is warfarin accumulation and possible hemorrhagic...
Individual VKORC1 genotypes (N=52), overlaid on the genetic distance dendrogram.
Green: G/G genotype; Blue: G/A genotypes; Red: A/A genotypes.
P-values were calculated by a chi-squared test comparing observed allele frequencies with expected frequencies given the overall allelic ratios.

Clinica Chimica Acta, 2010, in press
Admixture Matching

Green: *1/*1 genotype; Blue: *1/*2 genotypes; Red: *1/*3 genotypes.
CYP2C9*2: 0%; 7.7%; 18.8% // CYP2C9*3: 11.1%; 7.6%; 0%

Clinica Chimica Acta, 2010, in press
IWPC-derived Warfarin Dosing Algorithm

$R^2 = 0.3633$
AD = 7.9 mg/week
25% mean bias
Stepwise Regression Model (n=127)

$R^2 = 0.382$
SEE=1.49 mg/day
$p=0.018$

Variables:
- VKORC1 Code
- AGE
- CYP2C9*3 Code
- CYP2C9*2 Code

Dosing Algorithm for Puerto Rican Warfarin Patients
(San Juan & Hartford)
Vectors A $(1,0,0)$; B $(0,1,0)$; C $(0,0,1)$
Conclusions

• Three-way mixture in PR calls for markers that distinguish among all three ancestral populations.
• Our results demonstrated that pop analysis can be performed with a PG-array to facilitate the translation of genome diversity into personalized medicine.
• Early published warfarin dosing algorithms performed poorly in PR patients→ customized equation/rare alleles/admixture vector.
• Need to adjust by IA (admixture-matching) due to pop stratification.
Study Limitations

• Lack of database of markers with freq known in Native Americans (i.e., Tainos*).
• Sample size*
• Structure (clustering) analysis bias
• Cubic clustering criterion, pseudo Fstat
• Lack of admixture estimates on warfarin patients
Future Work

• Very high density of markers (Illumina iScan + Infinity Hap1M Duo BeadChip™: whole genome)
• Increase sample size & mining multiple databases w/Amerindians markers
• Identify markers that best represent the Native American–ancestry contribution of Hispanics
• Develop DNA-guided PerSoma model for warfarin dosing in PR
• Incorporate Admixture as a continuum variable
• Other cardio-vascular and neuro-endocrine conditions/drugs (Plavix, Statins, AAP-induced adverse events, etc)
Partners in PGx Research

Dr Gualberto Ruaño (CGR, Hartford Hospital)
Dr Andreas Windemuth (CGR, Hartford Hospital)
Dr Theodore Holford (Yale University)
Dr Richard Seip (CGR, Hartford Hospital)
Mr. David Villagra (CGR, Hartford Hospital)
Mr. Mohan Kocherla (CGR, Hartford Hospital)
Dr. Jose DeLeon (University of Kentucky, Lexington)

Dr Carmen L Cadilla (UPR-MSC)
Ms. Jessica Y Renta (UPR-MSC)
Mr. Carmelo Orenge (UPR-MSC)

Dr Iadelisse Cruz (UPR-MSC)
Prof. Rafael Garcia (UPR-MSC)
Dr. Jose J Hernandez (UPR-MSC)

Dr Giselle Rivera (VACHS-San Juan)
Dr Juan F Feliu (VACHS-San Juan)
Dr Pedro J Santiago-Borrero (Newborn Screening Program)

20 PharmD and Graduate students

Research Centers in Minority Institutions Award, G12RR-03051, from the NCRR-NIH; a Clinical Research Center Infrastructure Initiative Pilot Projects Award (RCRII) Grant No. 5P20RR011126; EARDA-Puerto Rico Newborn Screening Program and Genomas internal research and development funds.